Premium
Amide‐Functionalized Porous Carbonaceous Anode Materials for Lithium‐Ion Batteries
Author(s) -
Lee DongGeon,
Yim Taeeun,
Woo SangGil,
Yu JiSang
Publication year - 2019
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201801018
Subject(s) - anode , porosity , amide , surface modification , electrochemistry , lithium (medication) , materials science , chemical engineering , carbon fibers , chemistry , inorganic chemistry , electrode , organic chemistry , composite material , composite number , medicine , engineering , endocrinology
Porous carbonaceous anode materials have received considerable attention as an alternative anode material, however, there is a critical bottleneck as it suffers from a large irreversible specific capacity loss over several initial cycles owing to undesired surface reactions. In order to suppress undesired surface reactions of porous carbonaceous anode material, here, we suggest a simple and convenient two‐step surface modification approach that allows the embedding of an amide functional group on the surface of a porous carbonaceous anode, which effectively improves the surface stability. In this approach, the porous carbonaceous anode material is firstly activated by means of strong acid treatment comprising a combination of H 2 SO 4 and HNO 3 , and it is subjected to further modification by means of an amide coupling reaction. Our additional systematic analyses confirm that the acid functional group effectively transforms into the amide functional group. The resulting amide‐functionalized porous carbon exhibits an improved electrochemical performance: the initial discharge specific capacity is greatly reduced to less than 2,620 mA h g −1 and charge specific capacity is well still remained, indicating stabling cycling performance of the cell.