Premium
The Photoconversion of Phytochrome Includes an Unproductive Shunt Reaction Pathway
Author(s) -
Buhrke David,
Kuhlmann Uwe,
Michael Norbert,
Hildebrandt Peter
Publication year - 2018
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201701311
Subject(s) - phytochrome , chemistry , photochemistry , raman spectroscopy , biophysics , physics , biology , botany , optics , red light
Phytochromes are modular bimodal photoswitches that control gene expression for morphogenetic processes in plants. These functions are triggered by photoinduced conversions between the inactive and active states of the photosensory module, denoted as Pr and Pfr, respectively. In the present time‐resolved resonance Raman spectroscopic study of bacterial representatives of this photoreceptor family, we demonstrate that these phototransformations do not represent linear processes but include a branching reaction back to the initial state, prior to (de)activation of the output module. Thus, only a fraction of the photoreceptors undergoing the phototransformations can initiate the downstream signaling process, consistent with phytochrome's function as a sensor for more durable changes of light conditions.