z-logo
Premium
Structure and Dynamics of Water/Methanol Mixtures at Hydroxylated Silica Interfaces Relevant to Chromatography
Author(s) -
Gupta Prashant Kumar,
Meuwly Markus
Publication year - 2016
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201600180
Subject(s) - methanol , chemistry , dynamics (music) , chromatography , molecular dynamics , organic chemistry , computational chemistry , physics , acoustics
The spectroscopy and dynamics of water/methanol (MeOH) mixtures at hydroxylated silica surfaces is investigated from atomistic simulations. The particular focus is on how the structural dynamics of MeOH changes when comparing surface‐bound and MeOH in the bulk. From analyzing the frequency frequency correlation functions it is found that the dynamics on the picosecond time scale differs by almost a factor of two. While the relaxation time is 2.0 ps for MeOH in the bulk solvent it is considerably slowed‐down to 3.5 ps for surface‐bound MeOH. Surface‐adsorbed MeOH molecules reside there for several nanoseconds and their H‐bonds are strongly oriented towards the surface‐OH groups. These results are of particular relevance for chromatographic systems where the solvent may play a central role in their function. The present simulations suggest that surface‐sensitive spectroscopic techniques should be useful in better characterizing such heterogeneous systems and provide detailed insight into solvent dynamics and structure relevant in chromatographic applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here