Premium
NMR Crystallography of an Oxovanadium(V) Complex by an Approach Combining Multinuclear Magic Angle Spinning NMR, DFT, and Spin Dynamics Simulations
Author(s) -
Pourpoint Frédérique,
Yehl Jenna,
Li Mingyue,
Gupta Rupal,
Trébosc Julien,
Lafon Olivier,
Amoureux JeanPaul,
Polenova Tatyana
Publication year - 2015
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201500033
Subject(s) - nuclear magnetic resonance spectroscopy , carbon 13 nmr satellite , chemistry , nuclear magnetic resonance crystallography , density functional theory , crystallography , magic angle spinning , nmr spectra database , transverse relaxation optimized spectroscopy , spectroscopy , carbon 13 nmr , molecular dynamics , vanadium , fluorine 19 nmr , computational chemistry , spectral line , stereochemistry , physics , inorganic chemistry , quantum mechanics , astronomy
Bioinorganic vanadium(V) solids are often challenging for structural analysis. Here, we explore an NMR crystallography approach involving multinuclear 13 C/ 51 V solid‐state NMR spectroscopy, density functional theory (DFT), and spin dynamics numerical simulations, for the spectral assignment and the 3D structural analysis of an isotopically unmodified oxovanadium(V) complex, containing 17 crystallographically inequivalent 13 C sites. In particular, we report the first NMR determination of C–V distances. So far, the NMR observation of 13 C– 51 V proximities has been precluded by the specification of commercial NMR probes, which cannot be tuned simultaneously to the close Larmor frequencies of these isotopes (100.6 and 105.2 MHz for 13 C and 51 V, respectively, at 9.4 T). By combining DFT calculations and 13 C– 51 V NMR experiments, we propose a complete assignment of the 13 C spectrum of this oxovanadium(V) complex. Furthermore, we show how 13 C– 51 V distances can be quantitatively estimated.