Premium
On the DFT Ground State of Crystalline Bromine and Iodine
Author(s) -
George Janine,
Reimann Christoph,
Deringer Volker L.,
Bredow Thomas,
Dronskowski Richard
Publication year - 2015
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201402890
Subject(s) - density functional theory , bromine , halogen , yield (engineering) , monatomic gas , hybrid functional , ground state , computational chemistry , chemistry , molecular vibration , materials science , chemical physics , molecule , physics , atomic physics , thermodynamics , organic chemistry , alkyl
We report on an erroneous ground state within common density functional theory (DFT) methods for the solid elements bromine and iodine. Phonon computations at the GGA level for both molecular crystals yield imaginary vibrational modes, erroneously indicating dynamic instability—that fact alone could easily pass as a computational artefact, but these imaginary modes lead to energetically more favorable and dynamically stable structures, made up of infinite monoatomic chains. In contrast, meta‐GGA and hybrid functionals yield the correct energetic order for bromine, while for iodine, most global hybrids do not improve the GGA result significantly. The qualitatively correct answer, in both cases, is given by the long‐range corrected hybrid LC‐ωPBE, the Minnesota functionals M06L and M06, and by periodic Hartree–Fock and MP2 theory. This poor performance of economic DFT functionals should be kept in mind, for example, during global structure optimizations of systems with significant contributions from halogen bonds.