Premium
Advances in Modeling Sorption and Diffusion of Moisture in Porous Reactive Materials
Author(s) -
Harley Stephen J.,
Glascoe Elizabeth A.,
Lewicki James P.,
Maxwell Robert S.
Publication year - 2014
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201301097
Subject(s) - sorption , moisture , desorption , diffusion , outgassing , materials science , water vapor , adsorption , porous medium , porosity , thermodynamics , chemical engineering , chemistry , composite material , physics , organic chemistry , engineering
Water‐vapor‐uptake experiments were performed on a silica‐filled poly(dimethylsiloxane) (PDMS) network and modeled by using two different approaches. The data was modeled by using established methods and the model parameters were used to predict moisture uptake in a sample. The predictions are reasonably good, but not outstanding; many of the shortcomings of the modeling are discussed. A high‐fidelity modeling approach is derived and used to improve the modeling of moisture uptake and diffusion. Our modeling approach captures the physics and kinetics of diffusion and adsorption/desorption, simultaneously. It predicts uptake better than the established method; more importantly, it is also able to predict outgassing. The material used for these studies is a filled‐PDMS network; physical interpretations concerning the sorption and diffusion of moisture in this network are discussed.