z-logo
Premium
Proton‐Transfer Reactions of Acridine in Water‐Containing Ionic‐Liquid‐Rich Mixtures
Author(s) -
Kumar Vinod,
Pandey Ashish,
Pandey Siddharth
Publication year - 2013
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201300817
Subject(s) - protonation , acridine , chemistry , deprotonation , excited state , photochemistry , ionic liquid , fluorescence , proton , aqueous solution , ion , organic chemistry , catalysis , physics , quantum mechanics , nuclear physics
To assess the potential of ionic liquids (ILs) as a solubilizing media that facilitates proton‐transfer reactions, acridine prototropism is investigated using UV/Vis molecular absorbance as well as steady‐state and time‐resolved fluorescence with different ILs in the presence of a small amount of dilute acid or base. It is found that protonation and deprotonation of acridine, when dissolved in different ILs, can be triggered by the addition of a small amount of dilute aqueous HCl and NaOH, respectively, in both the ground and excited states, irrespective of the identity of the IL. However, the amount of dilute acid/base needed to protonate/deprotonate acridine dissolved in different ILs is found to vary from one IL to another. Steady‐state fluorescence measurements also imply the presence of interactions between the acidic proton(s) of IL cation and excited acridine. The interconversion of neutral and protonated acridine, as well as the presence of a weakly fluorescent complex between excited acridine and the acidic proton(s) of the IL cation, is further corroborated by the parameters recovered from the fitting of the excited‐state intensity‐decay data. It is established that ILs as solubilizing media readily support facile proton transfer in both ground and excited states.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here