Premium
Lithium‐Functionalized Metal–Organic Frameworks that Show >10 wt % H 2 Uptake at Ambient Temperature
Author(s) -
Han Sang Soo,
Jung Dong Hyun,
Choi SeungHoon,
Heo Jiyoung
Publication year - 2013
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201300225
Subject(s) - metal organic framework , hydrogen storage , chemistry , lithium (medication) , hydrogen bond , density functional theory , bar (unit) , metal , hydrogen , inorganic chemistry , molecule , computational chemistry , organic chemistry , adsorption , physics , medicine , meteorology , endocrinology
We have used grand canonical Monte Carlo simulations with a first‐principles‐based force field to show that metal–organic frameworks (MOFs) with Li functional groups (i.e. CLi bonds) allow for exceptional H 2 uptake at ambient temperature. For example, at 298 K and 100 bar, IRMOF‐1‐4Li shows a total H 2 uptake of 5.54 wt % and MOF‐200‐27Li exhibits a total H 2 uptake of 10.30 wt %, which are much higher than the corresponding values with pristine MOFs. Li‐functionalized MOF‐200 (MOF‐200‐27Li) shows 11.84 wt % H 2 binding at 243 K and 100 bar. These hydrogen‐storage capacities exceed the 2015 DOE target of 5.5 wt % H 2 . Moreover, the incorporation of Li functional groups into MOFs provides more benefits, such as higher delivery amount, for H 2 uptake than previously reported Li‐doped MOFs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom