Premium
Evaluating the COSMO‐RS Method for Modeling Hydrogen Bonding in Solution
Author(s) -
Tshepelevitsh Sofja,
Oss Merit,
Pung Astrid,
Leito Ivo
Publication year - 2013
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201300186
Subject(s) - supermolecule , chemistry , solvation , hydrogen bond , molecule , gibbs free energy , computational chemistry , cosmo rs , ion , acceptor , thermodynamics , organic chemistry , physics , condensed matter physics , ionic liquid , catalysis
The ability of the Conductor‐like Screening Model for Realistic Solvation (COSMO‐RS) computational method to model hydrogen bond (HB) formation in solution is examined by comparing computational data with experimental data from literature. This is the first study of this kind where mixed solvents are also involved. Hydrogen bond formation is examined between neutral molecules, between acids and their anions, and between various anion receptor molecules and different anions in a number of aprotic solvents. HB formation equilibrium constants, the corresponding Gibbs’ free energies and, when available from the literature, enthalpies were calculated. The supermolecule (SM) approach and the contact probability (CP) approach were used. Both in the case of the SM and CP approach, good to very good correlations between the experiment and computations are found for complexes formed from neutral species, enabling quantitative predictions. When the HB acceptor is an anion, the correlations are poor and in some cases even qualitative predictions fail.