z-logo
Premium
Deforming DNA: From Physics to Biology
Author(s) -
Prévost Chantal,
Takahashi Masayuki,
Lavery Richard
Publication year - 2009
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.200900253
Subject(s) - dna , computational biology , helix (gastropod) , flexibility (engineering) , icon , biology , nanotechnology , biophysics , physics , chemistry , genetics , computer science , materials science , ecology , statistics , mathematics , snail , programming language
DNA molecules do the twist: The DNA double helix is a remarkably adaptable molecule that can undergo major conformational rearrangements without being irreversibly damaged. Indeed, DNA deformation is an intrinsic feature of many biological processes. In this Minireview, the authors summarize recent advances in the study of DNA deformation. The picture shows five different conformations of the double helix of DNA.The DNA double helix has become a modern icon which symbolizes our understanding of the molecular basis of life. It is less widely recognized that the double helix proposed by Watson and Crick more than half a century ago is a remarkably adaptable molecule that can undergo major conformational rearrangements without being irreversibly damaged. Indeed, DNA deformation is an intrinsic feature of many of the biological processes in which it is involved. Over the last two decades, single‐molecule experiments coupled with molecular modeling have transformed our understanding of DNA flexibility, while the accumulation of high‐resolution structures of DNA–protein complexes have demonstrated how organisms can exploit this property as a useful feature for preserving, reading, replicating, and packaging the genetic message. In this Minireview we summarize the information now available on the extreme—and the less extreme—deformations of the double helix.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here