z-logo
Premium
Different Protonation Equilibria of 4‐Methylimidazole and Acetic Acid
Author(s) -
Gu Wei,
Helms Volkhard
Publication year - 2007
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.200700442
Subject(s) - protonation , deprotonation , acetic acid , chemistry , molecule , proton , hydrogen bond , molecular dynamics , computational chemistry , organic chemistry , ion , physics , quantum mechanics
Dynamic protonation equilibria in water of one 4‐methylimidazole molecule as well as for pairs and groups consisting of 4‐methylimidazole, acetic acid and bridging water molecules are studied using Q‐HOP molecular dynamics simulation. We find a qualitatively different protonation behavior of 4‐methylimidazole compared to that of acetic acid. On one hand, deprotonated, neutral 4‐methylimidazole cannot as easily attract a freely diffusing extra proton from solution. Once the proton is bound, however, it remains tightly bound on a time scale of tens of nanoseconds. In a linear chain composed of acetic acid, a separating water molecule and 4‐methylimidazole, an excess proton is equally shared between 4‐methylimidazole and water. When a water molecule is linearly placed between two acetic acid molecules, the excess proton is always found on the central water. On the other hand, an excess proton in a 4‐methylimidazole‐water‐4‐methylimidazole chain is always localized on one of the two 4‐methylimidazoles. These findings are of interest to the discussion of proton transfer along chains of amino acids and water molecules in biomolecules.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here