Premium
Power‐Law Blinking in the Fluorescence of Single Organic Molecules
Author(s) -
Hoogenboom Jacob P.,
Hernando Jordi,
van Dijk Erik M. H. P.,
van Hulst Niek F.,
GarcíaParajó Maria F.
Publication year - 2007
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.200600783
Subject(s) - power law , molecule , molecular physics , exponent , photon , chemical physics , chemistry , perylene , ergodicity , physics , quantum mechanics , mathematics , linguistics , statistics , philosophy
The blinking behavior of perylene diïmide molecules is investigated at the single‐molecule level. We observe long‐time scale blinking of individual multi‐chromophoric complexes embedded in a poly(methylmethacrylate) matrix, as well as for the monomeric dye absorbed on a glass substrate at ambient conditions. In both these different systems, the blinking of single molecules is found to obey analogous power‐law statistics for both the on and off periods. The observed range for single‐molecular power‐law blinking extends over the full experimental time window, covering four orders of magnitude in time and six orders of magnitude in probability density. From molecule to molecule, we observe a large spread in off‐time power‐law exponents. The distributions of off‐exponents in both systems are markedly different whereas both on‐exponent distributions appear similar. Our results are consistent with models that ascribe the power‐law behavior to charge separation and (environment‐dependent) recombination by electron tunneling to a dynamic distribution of charge acceptors. As a consequence of power‐law statistics, single molecule properties like the total number of emitted photons display non‐ergodicity.