Premium
Virtual‐Move Parallel Tempering
Author(s) -
Coluzza Ivan,
Frenkel Daan
Publication year - 2005
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.200400629
Subject(s) - parallel tempering , tempering , sampling (signal processing) , umbrella sampling , energy landscape , computer science , computational science , parallel computing , energy (signal processing) , efficient energy use , scheme (mathematics) , algorithm , chemistry , biological system , computational chemistry , molecular dynamics , materials science , mathematics , artificial intelligence , computer vision , engineering , statistics , electrical engineering , metallurgy , filter (signal processing) , mathematical analysis , bayesian probability , monte carlo molecular modeling , biology , biochemistry , markov chain monte carlo
Efficient sampling: Free‐energy landscapes for the refolding of a model protein are computed with the conventional adaptive parallel‐tempering (APT) scheme and the virtual‐move parallel‐tempering (VMPT) algorithm (a and b, respectively, in the picture). There is a striking difference in the sampling efficiency of the two methods. VMPT generates a fairly complete free‐energy landscape, whereas APT only generates fragments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom