Premium
OLED and PLED Devices Employing Electrogenerated, Intramolecular Charge‐Transfer Fluorescence
Author(s) -
Goes Marijn,
Verhoeven Jan W.,
Hofstraat Hans,
Brunner Klemens
Publication year - 2003
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.200390061
Subject(s) - oled , intramolecular force , acceptor , cathode , anode , diode , photochemistry , materials science , fluorescence , molecule , electron acceptor , excited state , electron transfer , chemistry , optoelectronics , electrode , layer (electronics) , atomic physics , nanotechnology , stereochemistry , optics , organic chemistry , physics , condensed matter physics
The light generating mechanism of a series of light emitting diodes with electron donor–bridge–acceptor systems (D–b–A) as the emitting species was examined by constructing model diodes based on small organic molecules (OLEDs) as well as on molecularly doped electroactive (poly‐ N ‐vinylcarbazole, PVK) and insulating (polystyrene, PS) polymers (PLEDs). The direct electrogeneration of an intramolecular charge‐transfer (CT) fluorescence of the donor–bridge–acceptor systems occurred readily in OLED devices with a D–b–A system as the emissive layer. In diodes with PS as the host matrix, hole‐injection and electron‐injection occurred directly in the D–b–A molecules residing close to the anode and the cathode, respectively. In the PVK diodes, hole‐injection occurred primarily into PVK and the positive charge carrier was subsequently trapped on the D–b–A molecule, whereas electron‐injection at the cathode side occurred directly into the D–b–A molecules. Charge‐hopping between neighboring molecules then occurred until a hole and electron resided on the same molecule, which is equivalent to the formation of the CT excited state, and which finally relaxed by intramolecular charge recombination under the emission of CT fluorescence.