z-logo
Premium
A scalable HPF implementation of a finite‐volume computational electromagnetics application on a CRAY T3E parallel system
Author(s) -
Pan Yi,
Shang Joseph J. S.,
Guo Minyi
Publication year - 2003
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.718
Subject(s) - computer science , fortran , parallel computing , scalability , solver , massively parallel , computational science , supercomputer , finite volume method , code (set theory) , programming language , physics , set (abstract data type) , database , mechanics
Abstract The time‐dependent Maxwell equations are one of the most important approaches to describing dynamic or wide‐band frequency electromagnetic phenomena. A sequential finite‐volume, characteristic‐based procedure for solving the time‐dependent, three‐dimensional Maxwell equations has been successfully implemented in Fortran before. Due to its need for a large memory space and high demand on CPU time, it is impossible to test the code for a large array. Hence, it is essential to implement the code on a parallel computing system. In this paper, we discuss an efficient and scalable parallelization of the sequential Fortran time‐dependent Maxwell equations solver using High Performance Fortran (HPF). The background to the project, the theory behind the efficiency being achieved, the parallelization methodologies employed and the experimental results obtained on the Cray T3E massively parallel computing system will be described in detail. Experimental runs show that the execution time is reduced drastically through parallel computing. The code is scalable up to 98 processors on the Cray T3E and has a performance similar to that of an MPI implementation. Based on the experimentation carried out in this research, we believe that a high‐level parallel programming language such as HPF is a fast, viable and economical approach to parallelizing many existing sequential codes which exhibit a lot of parallelism. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here