z-logo
Premium
Effective multicast programming in large scale distributed systems
Author(s) -
Eugster Patrick Th.,
Boichat Romain,
Guerraoui Rachid,
Sventek Joe
Publication year - 2001
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.584
Subject(s) - computer science , multicast , publication , asynchronous communication , distributed computing , message passing , computer network , advertising , business
Many distributed applications have a strong requirement for efficient dissemination of large amounts of information to widely spread consumers in large networks. These include applications in e‐commerce and telecommunication. Publish/subscribe is considered one of the most important interaction styles with which to model communication on a large scale. Producers publish information on a topic and consumers subscribe to the topics they wish to be informed of. The decoupling of producers and consumers in time, space, and flow makes the publish/subscribe paradigm very attractive for large scale distribution, especially in environments like the Internet. This paper describes the architecture and implementation of DACE (Distributed Asynchronous Computing Environment), a framework for publish/subscribe communication based on an object‐oriented programming abstraction in the form of Distributed Asynchronous Collection (DAC). DACs capture the variants of publish/subscribe, without blurring their respective advantages. The architecture we present is tolerant of network partitions and crash failures. The underlying model is based on the notion of Topic Membership: a weak membership for the parties involved in a topic. We present how Topic Membership enables the realization of a robust and efficient reliable multicast on a large scale. The protocol ensures that, inside a topic, even a subscriber who is temporarily partitioned away eventually receives a published message. Copyright © 2001 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom