z-logo
Premium
The impact of columnar file formats on SQL‐on‐hadoop engine performance: A study on ORC and Parquet
Author(s) -
Ivanov Todor,
Pergolesi Matteo
Publication year - 2019
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.5523
Subject(s) - computer science , benchmark (surveying) , database , sql , file format , compression ratio , operating system , engineering , geodesy , automotive engineering , geography , internal combustion engine
Summary Columnar file formats provide an efficient way to store data to be queried by SQL‐on‐Hadoop engines. Related works consider the performance of processing engine and file format together, which makes it impossible to predict their individual impact. In this work, we propose an alternative approach: by executing each file format on the same processing engine, we compare the different file formats as well as their different parameter settings. We apply our strategy to two processing engines, Hive and SparkSQL, and evaluate the performance of two columnar file formats, ORC and Parquet. We use BigBench (TPCx‐BB), a standardized application‐level benchmark for Big Data scenarios. Our experiments confirm that the file format selection and its configuration significantly affect the overall performance. We show that ORC generally performs better on Hive, whereas Parquet achieves best performance with SparkSQL. Using ZLIB compression brings up to 60.2% improvement with ORC, while Parquet achieves up to 7% improvement with Snappy. Exceptions are the queries involving text processing, which do not benefit from using any compression.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here