z-logo
Premium
Refactoring for introducing and tuning parallelism for heterogeneous multicore machines in Erlang
Author(s) -
Janjic Vladimir,
Brown Christopher,
Barwell Adam,
Hammond Kevin
Publication year - 2019
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.5420
Subject(s) - code refactoring , erlang (programming language) , computer science , parallel computing , multi core processor , scalability , software , programming language , operating system , functional programming
Summary This paper presents semi‐automatic software refactorings to introduce and tune structured parallelism in sequential Erlang code, as well as to generate code for running computations on GPUs and possibly other accelerators. Our refactorings are based on the lapedo framework for programming heterogeneous multi‐core systems in Erlang. lapedo is based on the PaRTE refactoring tool and also contains (1) a set of hybrid skeletons that target both CPU and GPU processors, (2) novel refactorings for introducing and tuning parallelism, and (3) a tool to generate the GPU offloading and scheduling code in Erlang, which is used as a component of hybrid skeletons. We demonstrate, on four realistic use‐case applications, that we are able to refactor sequential code and produce heterogeneous parallel versions that can achieve significant and scalable speedups of up to 220 over the original sequential Erlang program on a 24‐core machine with a GPU.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here