Premium
A study on the evaluation of HPC microservices in containerized environment
Author(s) -
Jha Devki Nandan,
Garg Saurabh,
Jayaraman Prem Prakash,
Buyya Rajkumar,
Li Zheng,
Morgan Graham,
Ranjan Rajiv
Publication year - 2019
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.5323
Subject(s) - microservices , computer science , container (type theory) , virtualization , cloud computing , operating system , scalability , software engineering , engineering , mechanical engineering
Summary Containers are gaining popularity over virtual machines as they provide the advantages of virtualization with the performance of near bare metal. The uniformity of support provided by Docker containers across different cloud providers makes them a popular choice for developers. Evolution of microservice architecture allows complex applications to be structured into independent modular components making them easier to manage. High‐performance computing (HPC) applications are one such application to be deployed as microservices, placing significant resource requirements on the container framework. However, there is a possibility of interference between different microservices hosted within the same container (intracontainer) and different containers (intercontainer) on the same physical host. In this paper, we describe an extensive experimental investigation to determine the performance evaluation of Docker containers executing heterogeneous HPC microservices. We are particularly concerned with how intracontainer and intercontainer interference influences the performance. Moreover, we investigate the performance variations in Docker containers when control groups (cgroups) are used for resource limitation. For ease of presentation and reproducibility, we use Cloud Evaluation Experiment Methodology (CEEM) to conduct our comprehensive set of experiments. We expect that the results of evaluation can be used in understanding the behavior of HPC microservices in the interfering containerized environment.