Premium
Detection and classification of normal and abnormal patterns in mammograms using deep neural network
Author(s) -
Suresh R.,
Rao A. Nagaraja,
Reddy B. Eswara
Publication year - 2019
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.5293
Subject(s) - artificial intelligence , pattern recognition (psychology) , computer science , preprocessor , segmentation , feature extraction , artificial neural network , mammography , breast cancer , convolutional neural network , histogram , classifier (uml) , image segmentation , computer vision , image (mathematics) , cancer , medicine
Summary Breast cancer detection is the most challenging aspect in the field of health monitoring system. In this paper, breast cancer detection was assessed by employing Mammographic Image Analysis Society (MIAS) dataset. The proposed approach contains four major steps, namely, image‐preprocessing, segmentation, feature extraction, and classification. Initially, Laplacian filtering was utilized to identify the area of edges in mammogram images and, also, it was very sensitive to noise. Then, segmentation was carried‐out using modified‐Adaptively Regularized Kernel‐based Fuzzy‐C‐Means (ARKFCM); it was a flexible high level machine learning technique to localize the object in complex template. In conventional ARKFCM, it was hard to segment the ill‐defined masses in mammogram images. To address this concern, the Euclidean distance in ARKFCM was replaced by correlation function in order to improve the segmentation efficiency. The hybrid feature extraction (Histogram of Oriented Gradients (HOG), homogeneity, and energy) was performed on the segmented cancer region to extract feature subsets. The respective feature values were given as the input for a multi‐objective classifier: Deep Neural Network (DNN) for classifying the normal and abnormal regions in mammogram images. The experimental outcome shows that the proposed methodology improved accuracy in breast cancer classification up to 3% to 9% compared to other existing methods.