z-logo
Premium
Packer identification method based on byte sequences
Author(s) -
Jung ByeongHo,
Bae Seong Il,
Choi Chang,
Im Eul Gyu
Publication year - 2018
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.5082
Subject(s) - unpacking , executable , malware , computer science , identification (biology) , code (set theory) , byte , data mining , operating system , programming language , set (abstract data type) , philosophy , linguistics , botany , biology
Summary With the growing number of malware, malware analysis technologies need to be advanced continuously. Malware authors use various packing techniques to hide their code from malware detection tools and techniques. The packing techniques are generally used to compress and encrypt executable code in executable files, and the unpacking code is usually embedded in the executable files. Therefore, packed executable files can be executed by itself, and the information associated with packing can be used to analyze and detect malware. Since different packing tools will generate different packed executable files, packing tools can be identified by analyzing packed executable files, and packer identification can reduce malware‐analyzing overheads, and the executable files can even be unpacked. However, most previous studies focused on packing detection using signatures of unpacking code, and these approaches can be avoided by placing unpacking code in other locations or by distributing unpacking code in multiple locations. In this paper, we propose a new packer identification method by analyzing only code sections to extract features of malware generated by different packing tools. Experimental results show that our approach can identify different packing tools with the accuracy of 91.6% on average. Considering packer identification is the harder problem than packing detection, we argue that our approach can contribute to reducing overheads of malware analysis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here