Premium
A DFA‐based approach for the deployment of BPaaS fragments in the cloud
Author(s) -
Hedhli Ameni,
Mezni Haithem
Publication year - 2020
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.5075
Subject(s) - cloud computing , outsourcing , computer science , software deployment , distributed computing , process (computing) , scheme (mathematics) , set (abstract data type) , software as a service , focus (optics) , order (exchange) , software engineering , software , operating system , business , mathematical analysis , mathematics , marketing , software development , programming language , physics , finance , optics
Summary Cloud computing is an emerging technology that is largely adopted by the current computing industry. With the growing number of Cloud services, Cloud providers' main focus is how to best offer efficient services (eg, SaaS, BPaaS, mobile services, etc) in order to hook the eventual customers. To meet this goal, services arrangement and placement in the cloud is becoming a serious problem because an optimal placement of these applications and their related data in accordance with the available resources can increase companies' benefits. Since there is a widespread deployment of business processes in the cloud, the hereinafter conducted research works aim to enhance the business processes' outsourcing by providing an optimized placement scheme that would attract cloud customers. In the light of these facts, the purpose of this paper is to deal with the BPaaS placement problem while optimizing both the total execution time and cloud resources' usage. To do so, we first determine the redundant BPaaS fragments using a DNA Fragment Assembly technique. We apply a variant of the Genetic Algorithm to resolve it. Then, we propose a placement algorithm, which produces an optimized placement scheme on the basis of the determined fragments relations. We follow that by an implementation of the whole placement process and a set of experimental results that have shown the feasibility and efficiency of the proposed approach.