Premium
Efficient collection of sensor data via a new accelerated random walk
Author(s) -
Angelopoulos C. M.,
Nikoletseas S.,
Patroumpa D.,
Raptopoulos C.
Publication year - 2013
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.3108
Subject(s) - random walk , wireless sensor network , computer science , random walker algorithm , theoretical computer science , computer network , mathematics , statistics
Summary Motivated by the problem of efficiently collecting data from wireless sensor networks via a mobile sink, we present an accelerated random walk on random geometric graphs (RGG). Random walks in wireless sensor networks can serve as fully local, lightweight strategies for sink motion that significantly reduce energy dissipation but introduce higher latency in the data collection process. In most cases, random walks are studied on graphs like G n , p and grid. Instead, we here choose the RGG model, which abstracts more accurately spatial proximity in a wireless sensor network. We first evaluate an adaptive walk (the random walk with inertia) on the RGG model; its performance proved to be poor and led us to define and experimentally evaluate a novel random walk that we call γ‐stretched random walk . Its basic idea is to favour visiting distant neighbours of the current node towards reducing node overlap and accelerate the cover time. We also define a new performance metric called proximity cover time that, along with other metrics such as visit overlap statistics and proximity variation, we use to evaluate the performance properties and features of the various walks. Copyright © 2013 John Wiley & Sons, Ltd.