z-logo
Premium
Tsunami: massively parallel homomorphic hashing on many‐core GPUs
Author(s) -
Chu Xiaowen,
Zhao Kaiyong,
Li Zongpeng
Publication year - 2011
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.1826
Subject(s) - computer science , homomorphic encryption , massively parallel , parallel computing , multi core processor , hash function , core (optical fiber) , computer security , encryption , telecommunications
SUMMARY Homomorphic hash functions play a key role in securing distributed systems that use coding techniques such as erasure coding and network coding. The computational complexity of homomorphic hash functions remains a main challenge. In this paper, we present a massively parallel solution, named Tsunami , by exploiting the widely available many‐core graphic processing units (GPUs). Tsunami includes the following optimization techniques to achieve the highest ever hashing throughput: (1) using Montgomery multiplication and precomputation to speed up modular exponentiations; (2) using a clean implementation of Montgomery multiplication in order to decrease the demand of registers and shared memory and increase the utilization ratio of GPU processing cores; (3) using our own assembly code to implement the 32‐bit integer multiplication, which outperforms the assembly codes generated by the native compiler by 20%; and (4) exploiting memory alignment and constant memory on GPUs to improve the efficiency of memory access. Integrating the above techniques, our Tsunami achieves a significant improvement over existing results. Specifically, the hashing throughput achieved by Tsunami on a GTX295 GPU (NVIDIA, Santa Clara, CA, US) is about 33 times that of the existing solution on a quad‐core CPU. We also show that the hashing throughput grows almost linearly with the number of GPU cores. Copyright © 2011 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom