Premium
Mining Web search engines for query suggestion
Author(s) -
Xu Zheng,
Luo Xiangfeng,
Yu Jie,
Xu Weimin
Publication year - 2011
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.1689
Subject(s) - information retrieval , computer science , web query classification , web search query , search engine , query expansion , ranking (information retrieval) , leverage (statistics) , query optimization , world wide web , data mining , artificial intelligence
Abstract Queries to Web search engines are usually short and ambiguous, which provides insufficient information needs of users for effectively retrieving relevant Web pages. To address this problem, query suggestion is implemented by most search engines. However, existing methods do not leverage the contradiction between accuracy and computation complexity appropriately (e.g. Google's ‘Search related to’ and Yahoo's ‘Also Try’). In this paper, the recommended words are extracted from the search results of the query, which guarantees the real time of query suggestion properly. A scheme for ranking words based on semantic similarity presents a list of words as the query suggestion results, which ensures the accuracy of query suggestion. Moreover, the experimental results show that the proposed method significantly improves the quality of query suggestion over some popular Web search engines (e.g. Google and Yahoo). Finally, an offline experiment that compares the accuracy of snippets in capturing the number of words in a document is performed, which increases the confidence of the method proposed by the paper. Copyright © 2010 John Wiley & Sons, Ltd.