z-logo
Premium
Automatically constructing semantic link network on documents
Author(s) -
Zhuge Hai,
Zhang Junsheng
Publication year - 2010
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.1624
Subject(s) - computer science , set (abstract data type) , information retrieval , semantic network , semantic computing , probabilistic logic , probabilistic latent semantic analysis , artificial intelligence , semantic web , programming language
Knowing semantic links among resources is the basis of realizing machine intelligence over large‐scale resources. Discovering semantic links among resources with limited human interference is a challenge issue. This paper proposes an approach to automatically discovering and predicting semantic links in a document set based on a model of document semantic link network (SLN). The approach has the following advantages: it supports probabilistic relational reasoning; SLNs and the relevant rules automatically evolve; and, it can adapt to the update of the adopted techniques. The approach can support cyber space applications, such as documentation recommendation and relational queries, on large documents. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom