z-logo
Premium
Cooperative load balancing in distributed systems
Author(s) -
Grosu D.,
Chronopoulos A. T.,
Leung M. Y.
Publication year - 2008
Publication title -
concurrency and computation: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 67
eISSN - 1532-0634
pISSN - 1532-0626
DOI - 10.1002/cpe.1331
Subject(s) - computer science , load balancing (electrical power) , distributed computing , bargaining problem , nash equilibrium , scheduling (production processes) , queueing theory , game theory , weighted round robin , mathematical optimization , round robin scheduling , computer network , dynamic priority scheduling , mathematics , mathematical economics , geometry , quality of service , grid
A serious difficulty in concurrent programming of a distributed system is how to deal with scheduling and load balancing of such a system which may consist of heterogeneous computers. In this paper, we formulate the static load‐balancing problem in single class job distributed systems as a cooperative game among computers. The computers comprising the distributed system are modeled as M/M/1 queueing systems. It is shown that the Nash bargaining solution (NBS) provides an optimal solution (operation point) for the distributed system and it is also a fair solution. We propose a cooperative load‐balancing game and present the structure of NBS. For this game an algorithm for computing NBS is derived. We show that the fairness index is always equal to 1 using NBS, which means that the solution is fair to all jobs. Finally, the performance of our cooperative load‐balancing scheme is compared with that of other existing schemes. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom