Premium
Large time behavior and homogenization of solutions of two‐dimensional conservation laws
Author(s) -
Engquist Bjorn,
Weinan E
Publication year - 1993
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.3160460102
Subject(s) - conservation law , homogenization (climate) , mathematics , statistical physics , mathematical economics , mathematical analysis , physics , ecology , biodiversity , biology
We study the large time behavior of solutions of scalar conservation laws in one and two space dimensions with periodic initial data. Under a very weak nonlinearity condition, we prove that the solutions converge to constants as time goes to infinity. Even in one space dimension our results improve the earlier ones since we only require the fluxes to be nonlinear in a neighborhood of the mean value of the initial data. We then use these results to study the homogenization problem for scalar conservation laws with oscillatory initial data.