Premium
Smooth tame Fréchet algebras and lie groups of pseudodifferential operators
Author(s) -
Payne Kevin R.
Publication year - 1991
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.3160440304
Subject(s) - pseudodifferential operators , mathematics , linear subspace , pure mathematics , order (exchange) , class (philosophy) , lie group , algebra over a field , epistemology , philosophy , finance , economics
For pseudodifferential operator algebras with globally defined 0‐order symbols belonging to either the Hörmander class S 0,0 0 (ℝ) or certain prescribed subspaces, it is shown that these algebras possess important smooth tame structures that make them amenable to nonlinear functional analysis of Nash‐Moser type.