z-logo
Premium
Matrix factorizations and integrable systems
Author(s) -
Deift P.,
Li L. C.,
Tomei C.
Publication year - 1989
Publication title -
communications on pure and applied mathematics
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.3160420405
Subject(s) - integrable system , mathematics , cholesky decomposition , eigenvalues and eigenvectors , integer (computer science) , algebra over a field , integer matrix , matrix (chemical analysis) , hamiltonian matrix , pure mathematics , symmetric matrix , nonnegative matrix , computer science , materials science , composite material , physics , quantum mechanics , programming language
Abstract We show that the QR, LU and Cholesky algorithms to compute the eigenvalues of real matrices are the integer time evaluations of completely integrable Hamiltonian flows.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here