Premium
Matrix factorizations and integrable systems
Author(s) -
Deift P.,
Li L. C.,
Tomei C.
Publication year - 1989
Publication title -
communications on pure and applied mathematics
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.3160420405
Subject(s) - integrable system , mathematics , cholesky decomposition , eigenvalues and eigenvectors , integer (computer science) , algebra over a field , integer matrix , matrix (chemical analysis) , hamiltonian matrix , pure mathematics , symmetric matrix , nonnegative matrix , computer science , materials science , composite material , physics , quantum mechanics , programming language
Abstract We show that the QR, LU and Cholesky algorithms to compute the eigenvalues of real matrices are the integer time evaluations of completely integrable Hamiltonian flows.