z-logo
Premium
On a Hilbert space of analytic functions and an associated integral transform part I
Author(s) -
Bargmann V.
Publication year - 1961
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.3160140303
Subject(s) - hilbert space , space (punctuation) , mathematics , hilbert transform , citation , pure mathematics , computer science , library science , linguistics , philosophy , statistics , spectral density
summary:Toeplitz quantization is defined in a general setting in which the symbols are the elements of a possibly non-commutative algebra with a conjugation and a possibly degenerate inner product. We show that the quantum group $SU_q(2)$ is such an algebra. Unlike many quantization schemes, this Toeplitz quantization does not require a measure. The theory is based on the mathematical structures defined and studied in several recent papers of the author; those papers dealt with some specific examples of this new Toeplitz quantization. Annihilation and creation operators are defined as densely defined Toeplitz operators acting in a quantum Hilbert space, and their commutation relations are discussed. At this point Planck's constant is introduced into the theory. Due to the possibility of non-commuting symbols, there are now two definitions for anti-Wick quantization; these two definitions are equivalent in the commutative case. The Toeplitz quantization introduced here satisfies one of these definitions, but not necessarily the other. This theory should be considered as a second quantization, since it quantizes non-commutative (that is, already quantum) objects. The quantization theory presented here has two essential features of a physically useful quantization: Planck's constant and a Hilbert space where natural, densely defined operators act

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here