z-logo
Premium
A reduced theory for thin‐film micromagnetics
Author(s) -
Desimone Antonio,
Kohn Robert V.,
Müller Stefan,
Otto Felix
Publication year - 2002
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.3028
Subject(s) - micromagnetics , limit (mathematics) , degenerate energy levels , convergence (economics) , limiting , ground state , magnetization , mathematics , regular polygon , field (mathematics) , ferromagnetism , variational inequality , mathematical analysis , condensed matter physics , physics , magnetic field , quantum mechanics , geometry , pure mathematics , mechanical engineering , engineering , economics , economic growth
Micromagnetics is a nonlocal, nonconvex variational problem. Its minimizer represents the ground‐state magnetization pattern of a ferromagnetic body under a specified external field. This paper identifies a physically relevant thin‐film limit and shows that the limiting behavior is described by a certain “reduced” variational problem. Our main result is the Γ‐convergence of suitably scaled three‐dimensional micromagnetic problems to a two‐dimensional reduced problem; this implies, in particular, convergence of minimizers for any value of the external field. The reduced problem is degenerate but convex; as a result, it determines some (but not all) features of the ground‐state magnetization pattern in the associated thin‐film limit. © 2002 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom