Premium
Gromov‐Hausdorff Limits of Kähler Manifolds with Ricci Curvature Bounded Below II
Author(s) -
Liu Gang,
Szekelyhidi Gábor
Publication year - 2021
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21900
Subject(s) - mathematics , ricci curvature , bounded function , tangent , pure mathematics , curvature , ricci flat manifold , mathematical analysis , geometry , scalar curvature
We study noncollapsed Gromov‐Hausdorff limits of Kähler manifolds with Ricci curvature bounded below. Our main result is that each tangent cone is homeomorphic to a normal affine variety. This extends a result of Donaldson‐Sun, who considered noncollapsed limits of polarized Kähler manifolds with two‐sided Ricci curvature bounds. © 2019 Wiley Periodicals LLC
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom