Premium
Regularity for Shape Optimizers: The Nondegenerate Case
Author(s) -
Kriventsov Dennis,
Lin Fanghua
Publication year - 2018
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21743
Subject(s) - mathematics , bernoulli's principle , boundary (topology) , eigenvalues and eigenvectors , dimension (graph theory) , dirichlet distribution , function (biology) , dirichlet boundary condition , hausdorff space , set (abstract data type) , hausdorff dimension , mathematical analysis , pure mathematics , boundary value problem , programming language , physics , quantum mechanics , evolutionary biology , computer science , engineering , biology , aerospace engineering
We consider minimizers of F ( λ 1 ( Ω ) , … , λ N ( Ω ) ) + | Ω | , where F is a function strictly increasing in each parameter, andλ k ( Ω )is the k th Dirichlet eigenvalue of Ω. Our main result is that the reduced boundary of the minimizer is composed of C 1,α graphs and exhausts the topological boundary except for a set of Hausdorff dimension at most n – 3. We also obtain a new regularity result for vector‐valued Bernoulli‐type free boundary problems.© 2018 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom