Premium
A Minkowski Inequality for Hypersurfaces in the Anti‐de Sitter‐Schwarzschild Manifold
Author(s) -
Brendle Simon,
Hung PeiKen,
Wang MuTao
Publication year - 2016
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21556
Subject(s) - mathematics , minkowski space , manifold (fluid mechanics) , schwarzschild radius , pure mathematics , minkowski inequality , de sitter universe , mean curvature flow , inequality , mathematical analysis , inverse , isoperimetric inequality , hölder's inequality , mean curvature , mathematical physics , curvature , geometry , classical mechanics , linear inequality , universe , physics , mechanical engineering , gravitation , astrophysics , engineering
We prove a sharp inequality for hypersurfaces in the n ‐dimensional anti‐de Sitter‐Schwarzschild manifold for general n ≥ 3. This inequality generalizes the classical Minkowski inequality for surfaces in the three‐dimensional euclidean space and has a natural interpretation in terms of the Penrose inequality for collapsing null shells of dust. The proof relies on a new monotonicity formula for inverse mean curvature flow and uses a geometric inequality established by the first author in [3].© 2015 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom