Premium
On the Space of Kähler Potentials
Author(s) -
He Weiyong
Publication year - 2015
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21515
Subject(s) - geodesic , mathematics , bounded function , manifold (fluid mechanics) , pure mathematics , space (punctuation) , kähler manifold , mathematical analysis , point (geometry) , geometry , linguistics , mechanical engineering , philosophy , engineering
We consider the geodesic equation for the generalized Kähler potential with only mixed second derivatives bounded. We show that given two such generalized Kähler potentials, there is a unique geodesic segment such that for each point on the geodesic, the generalized Kähler potential has uniformly bounded mixed second derivatives (in manifold directions). This generalizes a fundamental theorem of Chen (2000) on the space of Kähler potentials.© 2014 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom