z-logo
Premium
Two‐Phase Free Boundary Problems for Parabolic Operators: Smoothness of the Front
Author(s) -
Ferrari Fausto,
Salsa Sandro
Publication year - 2014
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21490
Subject(s) - lipschitz continuity , mathematics , smoothness , boundary (topology) , mathematical analysis , class (philosophy) , stability (learning theory) , computer science , machine learning , artificial intelligence
We continue to develop the regularity theory of general two‐phase free boundary problems for parabolic operators. In a 2010 paper, we establish the optimal (Lipschitz) regularity of a viscosity solution under the assumptions that the free boundary is locally a flat Lipschitz graph and a nondegeneracy condition holds. Here, on one side we improve this result by removing the nondegeneracy assumption; on the other side we prove the smoothness of the front. The proof relies in a crucial way on a local stability result stating that, for a certain class of operators, under small perturbations of the coefficients flat free boundaries remain close and flat. © 2013 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom