Premium
Strong Szegő Asymptotics and Zeros of the Zeta‐Function
Author(s) -
Bourgade Paul,
Kuan Jeffrey
Publication year - 2014
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21475
Subject(s) - mathematics , toeplitz matrix , riemann zeta function , riemann hypothesis , pure mathematics , gaussian , mathematical analysis , quantum mechanics , physics
Assuming the Riemann hypothesis, we prove the weak convergence of linear statistics of the zeros of the Riemann ζ‐function to a Gaussian field, with covariance structure corresponding to the H 1/2 ‐norm of the test functions. For this purpose, we obtain an approximate form of the explicit formula, relying on Selberg's smoothed expression for ζ'/ζ and the Helffer‐Sjöstrand functional calculus. Our main result is an analogue of the strong Szegő theorem, known for Toeplitz operators and random matrix theory. © 2014 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom