Premium
Bubbling Solutions for the SU(3) Chern‐Simons Model on a Torus
Author(s) -
Lin ChangShou,
Yan Shusen
Publication year - 2013
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21454
Subject(s) - torus , mathematics , chern–simons theory , omega , mathematical physics , higgs boson , dirac (video compression format) , measure (data warehouse) , combinatorics , physics , particle physics , geometry , quantum mechanics , gauge theory , database , computer science , neutrino
We consider the following nonlinear system derived from the SU(3) Chern‐Simons models on a torus Ω:$$(0.1)\,\,\,\left\{ \matrix{ \Delta u_1 - {1 \over {\varepsilon ^2 }}(4e^{2u_1 } - 2e^{2u_2 } - 2e^{u_1 } + e^{u_2 } - e^{u_2 } - e^{u_1 + u_2 } ) \hfill \cr \,\,\,\,\,\,\,\,\, = 4\pi \sum\nolimits_{j = 1}^{N_2 } {\delta p_j^1 } , \hfill \cr \Delta u_2 - {1 \over {\varepsilon ^2 }}(4e^{2u_2 } - 2e^{2u_1 } - 2e^{u_2 } + e^{u_1 } - e^{u_1 + u_2 } ) \hfill \cr \,\,\,\,\,\,\,\,\,\, = 4\pi \sum\nolimits_{j - 1}^{N_2 } {\delta p_j^2 ,} \hfill \cr} \right.$$ where $\delta_p$ denotes the Dirac measure at $p\in\Omega$ . When $\{p_j^1\}_1^{N_1}= \{p_j^2\}_1^{N_2}$ , if we look for a solution with $u_1=u_2=u$ , then (0.1) is reduced to the Chern‐Simons‐Higgs equation:$$(0.2)\,\,\Delta u + {1 \over {\varepsilon ^2 }}e^u (1 - e^u ) = 4\pi \sum\limits_{j = 1}^N {\delta p_j } .$$ The existence of bubbling solutions to (0.1) has been a longstanding problem. In this paper, we prove the existence of such solutions such that $u_1\ne u_2$ even if $\{p_j^1\}_1^{N_1}=\{p_j^2\}_1^{N_2}$ . © 2012 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom