Premium
The Isotropic Semicircle Law and Deformation of Wigner Matrices
Author(s) -
Knowles Antti,
Yin Jun
Publication year - 2013
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21450
Subject(s) - mathematics , eigenvalues and eigenvectors , isotropy , gaussian , matrix (chemical analysis) , deformation (meteorology) , spectrum (functional analysis) , random matrix , rank (graph theory) , mathematical analysis , law , combinatorics , quantum mechanics , physics , materials science , meteorology , political science , composite material
We analyze the spectrum of additive finite‐rank deformations of N × N Wigner matrices H . The spectrum of the deformed matrix undergoes a transition, associated with the creation or annihilation of an outlier, when an eigenvalue d i of the deformation crosses a critical value ± 1. This transition happens on the scale| d i | − 1 ∼ N − 1 / 3. We allow the eigenvalues d i of the deformation to depend on N under the condition‖ d i | − 1 |≥( log N )C log log N N − 1 / 3. We make no assumptions on the eigenvectors of the deformation. In the limit N → ∞, we identify the law of the outliers and prove that the nonoutliers close to the spectral edge have a universal distribution coinciding with that of the extremal eigenvalues of a Gaussian matrix ensemble. A key ingredient in our proof is the isotropic local semicircle law , which establishes optimal high‐probability bounds on〈 v , (( H − z )− 1 − m ( z ) 1 ) W 〉where m ( z ) is the Stieltjes transform of Wigner's semicircle law and v , w are arbitrary deterministic vectors.© 2013 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom