Premium
A Variational Analysis of the Toda System on Compact Surfaces
Author(s) -
Malchiodi Andrea,
Ruiz David
Publication year - 2013
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21433
Subject(s) - mathematics , type (biology) , key (lock) , surface (topology) , center (category theory) , scale (ratio) , variational inequality , mathematical analysis , pure mathematics , geometry , computer science , physics , ecology , chemistry , computer security , quantum mechanics , biology , crystallography
In this paper we consider the following Toda system of equations on a compact surface:\documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*} \begin{cases} - \Delta u_1 = 2 \rho_1 \Bigl( \frac{h_1 e^{u_1}}{\int \sum h_1 e^{u_1} dV_g} - 1 \Bigr) - \rho_2 \Bigl( \frac{h_2 e^{u_2}}{\int\sum h_2 e^{u_2} dV_g} - 1 \Bigr), \\[2\jot] - \Delta u_2 = 2 \rho_2 \Bigl( \frac{h_2 e^{u_2}}{\int\sum h_2 e^{u_2} dV_g} - 1 \Bigr) - \rho_1 \Bigl( \frac{h_1 e^{u_1}}{\int\sum h_1 e^{u_1} dV_g} - 1 \Bigr) \end{cases}. \end{align*} \end{document} We will give existence results by using variational methods in a noncoercive case. A key tool in our analysis is a new Moser‐Trudinger type inequality under suitable conditions on the center of mass and the scale of concentration of the two components u 1 and u 2 . © 2012 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom