Premium
PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming
Author(s) -
Candès Emmanuel J.,
Strohmer Thomas,
Voroninski Vladislav
Publication year - 2013
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21432
Subject(s) - mathematics , semidefinite programming , combinatorics , convex optimization , norm (philosophy) , regular polygon , unit sphere , phase (matter) , signal (programming language) , discrete mathematics , algorithm , mathematical optimization , computer science , physics , geometry , political science , law , programming language , quantum mechanics
Suppose we wish to recover a signal \input amssym $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}} {\bi x} \in {\Bbb C}^n$ from m intensity measurements of the form $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}} |\langle \bi x,\bi z_i \rangle|^2$ , $i = 1, 2, \ldots, m$ ; that is, from data in which phase information is missing. We prove that if the vectors $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}}{\bi z}_i$ are sampled independently and uniformly at random on the unit sphere, then the signal x can be recovered exactly (up to a global phase factor) by solving a convenient semidefinite program–‐a trace‐norm minimization problem; this holds with large probability provided that m is on the order of $n {\log n}$ , and without any assumption about the signal whatsoever. This novel result demonstrates that in some instances, the combinatorial phase retrieval problem can be solved by convex programming techniques. Finally, we also prove that our methodology is robust vis‐à‐vis additive noise. © 2012 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom