z-logo
Premium
Space of Ricci Flows I
Author(s) -
Chen Xiuxiong,
Wang Bing
Publication year - 2012
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21414
Subject(s) - mathematics , scalar curvature , ricci flow , compact space , isoperimetric inequality , bounded function , compactness theorem , moduli space , mathematical analysis , pure mathematics , ricci curvature , moduli , curvature , geometry , fixed point theorem , brouwer fixed point theorem , physics , quantum mechanics
In this paper, we study the moduli spaces of m ‐dimensional, κ‐noncollapsed Ricci flow solutions with bounded $\int |Rm|^{{m}/{2}}$ and bounded scalar curvature. We show a weak compactness theorem for such moduli spaces and apply it to study the estimates of isoperimetric constants, the Kähler‐Ricci flows, and the moduli spaces of gradient shrinking solitons. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom