z-logo
Premium
A General Fractional Porous Medium Equation
Author(s) -
de Pablo Arturo,
Quirós Fernando,
Rodríguez Ana,
Vázquez Juan Luis
Publication year - 2012
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.21408
Subject(s) - uniqueness , mathematics , bounded function , semigroup , domain (mathematical analysis) , combinatorics , mathematical physics , mathematical analysis
We develop a theory of existence and uniqueness for the following porous medium equation with fractional diffusion: \input amssym $$\left\{ {\matrix{ {{{\partial u} \over {\partial t}} + \left( { ‐ \Delta } \right)^{\sigma /2} \left( {\left| u \right|^{m ‐ 1} u} \right) = 0,} \hfill & {x \in {\Bbb R} ^N ,\,\,t > 0,} \hfill \cr {u\left( {x,0} \right) = f\left( x \right),} \hfill & {x \in {\Bbb R} ^N .} \hfill \cr } } \right.$$ We consider data \input amssym $f\in L^1(\Bbb{R}^N)$ and all exponents $0<\sigma<2\;and\;m>0$ . Existence and uniqueness of a strong solution is established for $ m > {m_\ast}={(N-\sigma)_+}/N$ , giving rise to an L 1 ‐contraction semigroup. In addition, we obtain the main qualitative properties of these solutions. In the lower range ${0 < m} \le {m_\ast}$ existence and uniqueness happen under some restrictions, and the properties of the solutions are different from the ones for the case above m * . We also study the dependence of solutions on f , m , and σ. Moreover, we consider the above questions for the problem posed in a bounded domain. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom