Premium
Regularized trace of the inverse of the dirichlet laplacian
Author(s) -
Dostanić Milutin R.
Publication year - 2011
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.20368
Subject(s) - mathematics , trace (psycholinguistics) , bounded function , dirichlet distribution , inverse , laplace operator , eigenvalues and eigenvectors , dirichlet eigenvalue , convex domain , pure mathematics , mathematical analysis , dirichlet's principle , physics , geometry , boundary value problem , philosophy , linguistics , quantum mechanics
For the eigenvalues $( \lambda_{n}) _{n=1}^{\infty}$ of the Dirichlet Laplacian on a bounded convex domain $\font\open=msbm10 at 10pt\def\C{\hbox{\open C}}\Omega\subset{\C}$ , we find the sum of the series$$\sum\limits_{n=1}^{\infty} \left( {{1}\over{\lambda_{n}}}-{{\vert \Omega\vert }\over{4\pi n}}\right),$$ the regularized trace of the inverse of Dirichlet Laplacian. © 2011 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom