z-logo
Premium
On stable self‐similar blowup for equivariant wave maps
Author(s) -
Donninger Roland
Publication year - 2011
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.20366
Subject(s) - equivariant map , mathematics , ode , minkowski space , eigenvalues and eigenvectors , stability (learning theory) , mathematical analysis , space (punctuation) , pure mathematics , geometry , physics , linguistics , philosophy , quantum mechanics , machine learning , computer science
We consider corotational wave maps from (3 + 1) Minkowski space into the 3‐sphere. This is an energy supercritical model that is known to exhibit finite‐time blowup via self‐similar solutions. The ground state self‐similar solution f 0 is known in closed form, and according to numerics, it describes the generic blowup behavior of the system. We prove that the blowup via f 0 is stable under the assumption that f 0 does not have unstable modes. This condition is equivalent to a spectral assumption for a linear second order ordinary differential operator. In other words, we reduce the problem of stable blowup to a linear ODE spectral problem. Although we are unable at the moment to verify the mode stability of f 0 rigorously, it is known that possible unstable eigenvalues are confined to a certain compact region in the complex plane. As a consequence, highly reliable numerical techniques can be applied and all available results strongly suggest the nonexistence of unstable modes, i.e., the assumed mode stability of f 0 . © 2011 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom