z-logo
Premium
A topological degree counting for some Liouville systems of mean field type
Author(s) -
Lin ChangShou,
Zhang Lei
Publication year - 2011
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.20355
Subject(s) - mathematics , invertible matrix , degree (music) , generalization , liouville equation , type (biology) , matrix (chemical analysis) , pure mathematics , field (mathematics) , inverse , nonlinear system , function (biology) , euler's formula , mathematical analysis , mathematical physics , geometry , quantum mechanics , physics , ecology , materials science , evolutionary biology , acoustics , composite material , quantum , biology
Let A = ( a ij ) n × n be an invertible matrix and A −1 = ( a ij ) n × n be the inverse of A . In this paper, we consider the generalized Liouville system 0.1$$\Delta_g u_i+\sum_{j=1}^n a_{ij}\rho_j\left({h_j e^{u_j}\over \int h_j e^{u_j}}-1\right)=0\quad {\rm in }\,M,$$ where 0 < h j ∈ C 1 ( M ) and \input amssym $\rho_j \in \Bbb R^+$ , and prove that, under the assumptions of ( H 1 ) and ( H 2 ) (see Introduction), the Leray‐Schauder degree of (0.1) is equal to$${(-\chi(M)+1)\cdots (-\chi(M)+N)\over N!}$$ if ρ = (ρ 1 , …, ρ n ) satisfies$$8\pi N\sum_{i=1}^n\rho_i<\sum_{1\leq i,j\leq n}a_{ij}\rho_i\rho_j<8\pi(N+1)\sum_{i=1}^n\rho_i.$$ Equation (0.1) is a natural generalization of the classic Liouville equation and is the Euler‐Lagrangian equation of the nonlinear function Φ ρ :$$\Phi_{\rho(u)}={1\over 2}\int\limits_M \sum_{1\leq i,j\leq n}a^{ij}\nabla_g u_i\cdot \nabla_{g} u_j+\sum_{i=1}^n\int\limits_M\rho_i u_i - \sum_{i=1}^{n} \rho_i {\rm log} \int\limits_M h_i e^{u_i}.$$The Liouville system (0.1) has arisen in many different research areas in mathematics and physics. Our counting formulas are the first result in degree theory for Liouville systems. © 2010 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom