z-logo
Premium
L p theory for the multidimensional aggregation equation
Author(s) -
Bertozzi Andrea L.,
Laurent Thomas,
Rosado Jesús
Publication year - 2011
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.20334
Subject(s) - uniqueness , order (exchange) , exponent , mathematics , singularity , combinatorics , mathematical physics , physics , mathematical analysis , linguistics , philosophy , finance , economics
We consider well‐posedness of the aggregation equation ∂ t u + div( uv ) = 0, v = −▿ K * u with initial data in \input amssym ${\cal P}_2 {\rm (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ in dimensions 2 and higher. We consider radially symmetric kernels where the singularity at the origin is of order | x | α , α > 2 − d , and prove local well‐posedness in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ for sufficiently large p < p s . In the special case of K ( x ) = | x |, the exponent p s = d /( d = 1) is sharp for local well‐posedness in that solutions can instantaneously concentrate mass for initial data in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ with p < p s . We also give an Osgood condition on the potential K ( x ) that guarantees global existence and uniqueness in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ . © 2010 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom