Premium
Gaussian curvature estimates for the convex level sets of p ‐harmonic functions
Author(s) -
Ma XiNan,
Ou Qianzhong,
Zhang Wei
Publication year - 2010
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.20318
Subject(s) - mathematics , gaussian curvature , harmonic function , convexity , curvature , mathematical analysis , regular polygon , boundary (topology) , norm (philosophy) , pseudoconvex function , harmonic , gaussian , pure mathematics , geometry , convex combination , convex optimization , physics , quantum mechanics , political science , financial economics , law , economics
We give a positive lower bound for the Gaussian curvature of the convex level sets of p ‐harmonic functions with the Gaussian curvature of the boundary and the norm of the gradient on the boundary. Combining the deformation process, this estimate gives a new approach to studying the convexity of the level sets of the p ‐harmonic function. © 2010 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom