Premium
Form boundedness of the general second‐order differential Operator
Author(s) -
Maz′ya Vladimir G.,
Verbitsky Igor E.
Publication year - 2006
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.20122
Subject(s) - mathematics , infinitesimal , differential operator , sobolev space , compact space , nabla symbol , order (exchange) , operator (biology) , laplace operator , pure mathematics , mathematical analysis , omega , chemistry , physics , finance , repressor , quantum mechanics , transcription factor , economics , gene , biochemistry
We give explicit necessary and sufficient conditions for the boundedness of the general second‐order differential operator$${\cal L} = \sum\limits_{i,\,j=1}^{n} a_{ij} \partial_{i} \partial_{j} + \sum\limits_{j=1}^{n} b_{j} \partial_{j} + c$$ with real‐ or complex‐valued distributional coefficients a ij , b j , and c , acting from the Sobolev space W 1, 2 (ℝ n ) to its dual W −1, 2 (ℝ n ). This enables us to obtain analytic criteria for the fundamental notions of relative form boundedness, compactness, and infinitesimal form boundedness of ℒ with respect to the Laplacian on L 2 (ℝ n ). In particular, we establish a complete characterization of the form boundedness of the Schrödinger operator $(i \nabla + \vec{a})^2 + q$ with magnetic vector potential $\vec{a} \in L^2_{{\rm loc}} (R^{n})^{n}$ and q ∈ D′ (ℝ n ). © 2005 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom